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ABSTRACT

The connection between optimal transport (OT) and control theory is well estab-
lished, most prominently in the Benamou—Brenier dynamic formulation. With
quadratic cost, the OT problem can be reframed as a stochastic control problem in
which a density p; evolves under a controlled velocity field v; subject to the con-
tinuity equation 9;p; + V - (psv¢) = 0. In this work, we introduce a velocity prior
into the continuity equation and derive a new Hamilton—Jacobi-Bellman (HJB)
formulation to learn dynamical probability flows. We further extend the approach
to the unbalanced setting by adding a growth term, capturing mass variation pro-
cesses common in scientific domains such as cell proliferation and differentiation.
Importantly, our method requires training only a single neural network to model
v, without the need for a separate model for the growth term g;. Finally, by de-
composing the velocity field as vViotal = Vprior + Vcorr, OUr approach is able to
capture complex transport patterns that prior methods struggle to learn due to the
curl-free limitation.

1 INTRODUCTION

From flow matching (FM) to action matching (AM), learning transport maps between distributions
has been widely explored in recent years (Lipman et al., |2022; |Albergo and Vanden-E1ijnden) 2022
Liu et al} [2022; Neklyudov et al.l 2023a)). Flow Matching (FM) (Lipman et al.| 2022)) learns a
time—dependent velocity field u; that pushes py to p; and can realize highly expressive transport
paths; however, the original FM with independent coupling between source and target does not
guarantee least action by minimizing the kinetic energy in the Benamou-Brenier sense. Instead,
it trains u; to match conditional expectations of displacement vectors under a chosen interpolation
scheme, which may yield non-optimal flows.

Action Matching (AM) (Neklyudov et al., |2023a) addresses this by parameterizing a scalar poten-
tial s; whose gradient Vs, induces the transport, aligning with the optimality conditions of OT and
yielding lower kinetic energy than unconstrained FM. The price is reduced expressiveness: Vs, is
curl-free, so AM cannot directly represent rotational or cyclic dynamics that are common in scien-
tific domains. From the Helmholtz decomposition perspective (Neklyudov et al., [2023a)), any vector
field w; can be written as u; = Vs + w; with w; divergence-free (Ambrosio et al.,[2005| §8.4.2).
Under this lens, AM retains only the gradient component and discards discards wy, explaining both
its energy efficiency and its inability to encode rotations and cycles.

In this paper, we seek a middle ground — expressive like FM, energy-aware like AM — by introduc-
ing a velocity prior vpyior and learning only the residual potential. We note that even compared with
energy-aware FM variants such as OT-CFM(Pooladian et al., 2023} [Tong et al., 2023a), our ap-
proach achieves better energy efficiency, as demonstrated in upper Table 2] Specifically, we decom-
pose the velocity field as viow (£, ) = Uprior(t, ) + Vs¢(x). Here vprior captures known rotational
dynamics or domain-specific effects such as RNA velocity in single-cell biology, while Vs, accounts
for the OT-consistent gradient component. We train s; by minimizing a modified Hamilton—Jacobi
residual that incorporates the prior, together with boundary terms that ensure pg — p;. This residual-
ized design preserves OT optimality conditions for the learned component, improves interpretability,
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and injects inductive bias without paying the kinetic-energy cost of unconstrained original FM. We
name our approach the Velocity Prior Hamiltonian-Jacobi Flow (VP-HIJF).

Motivation in practice In domains like single—cell biology and physical systems with known
drifts, accurate priors are available yet incomplete and and mass change such as cell proliferation and
decay is ubiquitous. VP-HIJF exploits these priors to encode hard—to—learn structure. The residual
potential learns both the correction that the prior can not explain and the mass changes through the
growth term. This yields a compact and interpretable alternative to fully free vector—field models,
particularly effective when local supervision is noisy but prior knowledge is rich.

2 BACKGROUND

Dynamical Optimal Transport Beyond the classic static Monge—Kantorovich formulation in OT
(Ambrosio et al.l 2005} |Villani et al 2008), there exists a dynamical formulation known as the
Benamou-Brenier problem which links OT with PDEs by representing the W5 distance as the
minimum kinetic energy where p; is density and v, is a velocity field with boundary conditions:
Plt=0 = Po, Plz=1 = p1, (Benamou and Brenier, 2000):

W22(p0,p1 = 1nf / /QHUt H Pt( )dl‘dt 0t,0t+V ( tvt) 0 (1)

PtV

Unbalanced Optimal Transport When total mass change over time such as following a growth-
decay process in biology, we add a growth rate g;(z) term to the continuity equation to incorporate
the weight changes (Chizat et al.| 2018):

Ope(x) + V- (pe(@) v () = ge(x) pe(x),  ple—o = po, P=1 = p1, 2

The Wasserstein—Fisher—Rao distance with scale § > 0 is defined as the minimal action balancing
transport cost and mass change:

WFR3(po, p1) = inf // Lve(@)]1? + 29t( x) )pt(x) dxdt, s.t. Eq 3)

pyU,g

Hamilton—Jacobi-Bellman (HJB) We recall the classical connection between optimal control
and Hamilton—Jacobi (HJ) theory. Consider a deterministic control system with state z(t) € RY,
control u(t), dynamics & = f(x,u,t), running cost L(z,u,t), and terminal cost t(z). The value
function

Vit,x) = inf{/t L(z(s),u(s),s)ds + 1/)(36(1))}

u(-)

gives the minimal cost-to-go from (¢, ) under admissible controls. It is well known that V' solves
the Hamilton—Jacobi—Bellman (HJB) PDE

oV (t,x) + H(z,VV(t,z),t) = 0, V(l,z)=1(z),

where the Hamiltonian is

H(z,p,t) := ir&f {L(z,u,t) —l—pr(x,u,t)}, p=VV(t,x).

Action Matching (AM) AM fits a scalar potential sy to learn a energy-minimizing flow between
distributions by minimizing the (un)balanced HJB residuals.

! 1
Loam = / Eyp, {&539(15@) + %|\V156(t,x)||2 + ng(t,m)} dt, )
0

with boundary constraints as: E,,, [so(z)] — Ez~p, [s1(2)].
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3 METHODOLOGY

We introduce a velocity-prior guided approach, the Velocity Prior Hamiltonian—Jacobi Flow (VP-
HJF), to solve the unbalanced optimal transport problem under the Wasserstein—Fisher—Rao (WFR)
metric (Eq.[2] [B). In contrast to prior approaches that fit two separate networks—one for transport
and one for growth (Zhang et al.,|2024; Wang et al.,[2025]), our method trains a single neural network.
Following (Neklyudov et al., 2023a), we can represent both the transport velocity field and the
growth term through a single scalar potential.

Proposition 3.1 (Neklyudov et al.l 2023al Prop. 3.3). Suppose we have a continuous dynamic flow
with density p;. Under mild conditions, there exists a unique scalar potential function 8;(x) such
that the unbalanced continuity equation is satisfied, with the velocity field and growth function
given by vy (x) = V& (x), gf () = §(x).

Building on Proposition [3.1] we reduces the WFR problem to learning a single model and incorpo-
rate problem-specific dynamics through a simple velocity decomposition. Specifically, we decom-
pose the velocity field into two parts: a known velocity prior and a learnable corrective velocity field
component:

vtotal(t7 .17) = Uprior (ta 1:) + vcorr(t7 x)a (5)
where vprior €ncodes domain knowledge (e.g. translations, rotations, RNA velocity), and v¢o,r 15
the is the data—driven corrective component. In this way, the prior captures coarse dynamics while
the model focuses on refinements such as correcting the residual transport and learning mass imbal-
ance that the prior cannot explain. In essence, our approach improves interpretability and reduces
the learning complexity through adding prior knowledge of the velocity field vp,ior — leaving the
learnable velocity field v, simpler learning tasks compared with other generative modeling meth-
ods of learning the entire velocity field viot41. Intuitively, our approach pays kinetic cost only for
the correction to the prior drift and for the mass growth-decay component, making learning more
efficient.

We can now define our velocity-prior guided unbalanced OT problem under the least-action principle
as:

Definition 3.2. Consider the following least-action objective with 6=1 and subject to the unbalanced
velocity-prior guided continuity equation :

1
Apevg) = [ [ (et + bo(t.0) pr(e) daat (©)
0
S.t. atpt =-V-: (Pt (Uprior + Ucorr)) + gt P, p\t:O = pPo, p\t:l = p1- (7)

Note that in our method we do not optimize over p directly. Instead, p; is induced by a parametric
flow ®¢ via & = vpyior(t, ) + Vsg(t, ) and defined as pf = (®Y) 4 po.

Prior-guided HJB residual Since solving for the minimum-action problem in primal form in
Definition [3.2]is intractable, we turn to its dual formulation. The key derivation step is to introduce
a scalar potential s(t,z) as the Lagrange multiplier for the prior-guided continuity equation and
applying the Fenchel-Young inequalities to the velocity field and growth term. We then obtain the
following dual lower bound (see Appendix [A]for details):

A(p7 v, g) > ]Epo(:zz) [ 80(33‘) ] - Epl(w) [ 51($) ]
1
- / /pt(x) (Bts + LIVs|® + Vs vprior + %52) da dt. ®)
0
The bound is tight point-wise if and only if when we choose the primal variables as

Ucorr(t7x) = V,@S(t, .T), g(t,l’) = S(tvgj)?

which shows that s can simultaneously control both the corrective transport Vs and the local
growth s. We can then plug these back to the continuity equation to get the optimal particle dynamics
and their log-weights evolve as

2(t) = Viotal (£, ) = Vprior(t, ) + Vgs(t, x), %bg w(t) = s(t, z(t)).
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Corollary 3.3 (HJB residual objective). Motivated by the duality form, we propose to parameterize
s¢(t, &) with a neural network and define the velocity-prior guided HIB residual as:

ro(t,z) := Oyse(t,x) + %“v$89(t,x)|‘2 + Vso(t, ) - vprior (t, ) + % so(t, ). 9)

Then minimizing
1
LuiB (9) = Epo(w) [80] - Epl(w) [81] + / Ept(gg) [w(t, I)Tg(t, 1‘)2] dt (10)
0

drives sg toward dual feasibility. Note that in practice, we use squared residual to prevent positive
and negative values from cancellation and add a importance weight w(t) trick to reduce variance.

Importance Reweighting The squared HIB residual can be dominated by a few high-variance
outliers (rare cells, sharp local flows), which destabilizes training. To ensure training stability and
preventing these extreme high residual outliers, we adopt a simple batch-wise importance reweight-
ing that down-weights large residuals. For a mini-batch {(¢;,z;)}2 ,, let r; = ] ro(ti, Te,i) ‘ + €
and with a temperature 7 > 0. Then for each sample, the weight is inversely proportions to a
temperature-shaped residual as w; o< r; 7. Thus, larger residuals get smaller weight, which re-
duces variance while keeping the update focused and stable.

Theorem 3.4 (Prior-guided HIB optimality). Suppose that the HBJ residual defined in corollary[3.3]
satisfies To(t, x) = 0 for ps-a.e on [0, 1] x R%, and the boundary constraints hold, then (py, Viotal, 9o )
satisfies the unbalanced continuity equation and the WFR optimality conditions in Definition[3.2] In
particular, the learned corrective field v}, = V.s¢ and growth g* = gg satisfy the optimality
conditions.

While the HIB residual enforces local optimality conditions, it does not guarantee that the terminal
distribution p§ matches with the target p;. To bridge this gap, we design a two-part reconstruction
objective: (i) a density matching term through the sliced Wasserstein between the predicted p; and
p1, and (ii) a mass term aligning the global log-mass ratio. These two terms directly calibrates the
terminal distribution’s shape and mass, complementing the HJB residual.

Reconstruction loss To align the terminal distribution in shape, we use a sliced Wasserstein ob-
jective. Let p; be the empirical terminal distribution learned from our model, and p; be the ground
truth target distribution. 6 is a random projection sampled from 6, ~ Unif(S%~1) for¢ = 1,..., L,

X are predicted samples, and Y are ground-truth samples, the sliced Wasserstein loss is defined as:
1 X
SW3(51, 1) ~ L;WQQ( (0, X1), (00, Y) ), an

where W2 on R is the 1D Wasserstein distance computed by sorting projections.

To capture global mass change, we integrate particle log—weights along the learned dynamics. With
WER scale 6 = 1 and a mini-batch of size B. At ¢ = 0, we initialize the weights as log w;(0) = 0,
and follow the below characteristic ODEs to calculate the predicted terminal mass ratio at t = 1
relative to t = O:

B
%bgwi(t) :Sg(t,xi(t)), F = ;;elogwi(l) = {logwi(l)}f;l (12)

We penalize against the ground truth ratio 7 via its logarithmic form to ensure stability and enforces

. . 2 . .
the WFR consistency: Lass. = (logr — log r) . Our final reconstruction loss combines the two
components with tunable coefficients:

£recon = )\sw Swg(ﬁla Pl) + )\mass (log’ﬁ - log T)Q (13)

with Ay > 0 and Apass > 0. In practice we use L € [64,512] random projections, and choose
Amass € [0.1, 1] to calibrate mass without overpowering other terms.
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Figure 1: Left (first two): Ours correctly learned the rotating dynamic while AM failed. Middle:
Vector field (red) bending away from vpyior (blue) to form petal shapes. Right: Predicted target
distribution matches with ground truth

Total objective Putting the pieces together, our total training loss is

1
n%in L(0) =Egmp,[s0(x)] — Egp, [51()] +/ Eprp,[w(t, z) ro(t, z)?] dt (14)
0

Luis

+ >\sw SW%(ﬁl, ,01) + Emass

Lrecon

where r¢(t, z) is the HIB residual, w(t, z) are the nonnegative weights, and p1(6) is the terminal
distribution obtained by pushing pg through the learned dynamics.

4 RELATED WORKS

Physics-constrained approach Existing works (Koshizuka and Sato), 2022} [Neklyudov et all
[2023b; [Tong et al.l [2020) add a potential-based prior V;(x) to the HJ equation to incorporate prior

knowledge for trajectory inference. In (Neklyudov et al., 2023b), this yields d;s + 3[|Vs|? + V; +

72282 = 0 and the conservative second—order law X + = —VV4(X}). Meanwhile, our method is the

velocity-based prior approach, the known velocity field vp,ior enters as a drift inside the continuity
equation, which produces the cross-term Vs- vp,io,. Since potential-based priors is curl-free, it can
not represent rotational flows as in (Neklyudov et al 2023a); By contrast, our data-driven formu-
lation uses a flexible measured vector fields directly as vprior, Which can be considered as a “free
drift” and learns only minimal optimal corrections and growth.

Other trajectory inference approaches. Trajectory inference has also advanced through flow
matching and Schridinger bridge methods, which scale effectively to high-dimensional data. Re-
cent SB variants further improve performance on single-cell datasets include (Huguet et al., 2022}
Tong et al, [2023b). For unbalanced settings, variational and regularized UOT methods such as
DeepRUOT, VRUOT, and VGFM directly learn transport dynamics and growth from snapshot data
(Zhang et al, 2024} [Sun et al., 2025} [Wang et al [2025). In particular, VRUOT also uses a single
network to model both the velocity field and the growth term, but it did not incorporate prior known
knowledge like ours.

5 EXPERIMENTS

5.1 SYNTHETIC DATASET

Balanced case - Rotating Ring First, we show a case when utilizing the velocity prior is crucial in
learning the correct velocity field where curl-free methods like AM fails. We tested on a 2D rotating
ring dataset where the points on the ring (source) are rotated by a fixed angle 6 (target). The velocity
prior is defined as vprior = wJx, where J is the skew-symmetric rotation matrix and x € R2, so

this becomes Jz = [0 1; —1 0][x1 x2]" = (—x2, 1)". The task for our model v,y is to
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Control action Total Kkinetic

Mass maps
Method W2 (VS) (vtotal) 10 A P
Flow Matching 0.582 18.369 18.369 9 i
OT-FM 0.402 18.707 18.707 8 = \\\\
VP-HIJF (Ours) 0.577 0.624 17.955 *, \
Prior-only (a=1)  1.351 0 36.250 AR \
6 : . ‘|
\ 5 /
Method Toed  |AlogT| Rel. % err. 51 \ /
7
VP-HIJF (ours) 1.356 0.044 430% 41 X oL
VP-HJF (W/0 Lrmass)  0.899 0455  36.56% 3{ ooy e
Unbalanced AM 0.938 0.413 33.80% = -

-2 0 2 4

Figure 2: Left: Upper table on Least Action Comparison for Balanced Gaussian Translation; Bot-
tom table: Effect of the mass 10sS Linass. Tpred 18 the predicted mass ratio , the absolute log error
|Alogr| = |logrpred — l0g 7'wue|, and the relative error (%), with 7. = 1.418. Right: Ellipses
shows the mean/covariance of our approach matches with Target for Unbalanced Gaussian Transla-
tion; Inside, each bin indicates weights. see Appendix E]

learn the residual correction after given the prior rotation knowledge, such as ensuring the boundary
condition by aligning the mismatched source and target density or correcting the radial drift by push
the points inwards or outwards,etc. In Figure [T]left (b), we show that since AM has the curl-free
limitation, without a prior, its model Vs;(z) failed to represent pure rotation where the streamlines
cut through the circle. In Figure |1|left (a), the streamlines from our method form a circular flow
indicating that vpior gives the model the correct inductive bias.

Diverging Petal We created a curved and rotated petal-shape dataset to test our method on di-
verging multi-trajectory paths. The source is a gaussian distribution concentrated in the center and
Vprior=wJz the rotation dynamic defined as before. Our task is to learn vpetal, a radial and angle-
dependent term that push outward the points along the radius with different speed depend on the
angle 6 = atan2(y, x). We have

Vpewt () = s(0)7, T = el 5(0) = max(0, b+ acos(kf)) (15)
Compared with the petal shape appeared in AM and MioFlow (Huguet et al., [2022)), the underlying
dynamic flow in our example is harder to learn, where the former one has a straight-axis aligned
radial expansion as r(z) = |z1| + |z2| with the gradient of r(z) being a piece-wise constant and
curl-free. Figure [T middle shows that our petal shape matches with the target shape. Figure [I]right
shows that the vector field (red arrows) are bending away from pure rotation (blue arrows) to align
strongly with the petal shape by pushing the mass outward.

Balanced case - Gaussian Translation In this experiment, we compare the least-action or energy
costs across different methods. As shown in Table[2{upper), our proposed VP-HJF achieves Wasser-
stein distance W5 accuracy on par with FM |Lipman et al.| (2022) while OT-FM |Tong et al.| (2023a);
Pooladian et al.| (2023) attains the lowest Wasserstein distance. By contrast, both FM and OT-FM
must learn the entire velocity field u; = Vs + w;, resulting in a much larger control action. This
demonstrates that VP-HJF leverages the structured prior effectively, where the prior dynamics carry
most of the transport, and the learned correction Vs makes adjustments. To verify that our improve-
ment is not solely due to a strong velocity prior vpior itself, we also report a prior-only baseline.
The prior alone shows moderate accuracy but with high kinetic cost, whereas our method is able to
balance both accuracy and energy efficiency. Additionally, Fig. [T| highlights that incorporating the
velocity prior is crucial in the rotational dynamics setting, as well as in a multi-trajectory example
where paths diverge into a petal shape.

Lotka—Volterra with growth. We model the prey and predator densities x;(t),z2(t) by a
first—order nonlinear ODE,

.j?l(t) = (133‘1(t) — ,8331(t) x2(t), j?g(t) = —7332(25) + 5I1(t> .1‘2(t),
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Alogr (abs) | Clean Gaussian noise @ Scalec  Wrong coeff
0.5 0.75 0.50 0.75 medium hard

VP-HJF (ours) 0.04 0.17 0.14 0.02 0.11 021 037
Prior-only' 0.35 0.35 0.35 035 035 035 035

Table 1: Ablations on prior robustness (LV). The absolute A logr := | log 7 — logr|. Prior-only
corresponds to the ground truth mass ratio (mass-conserving). Wrong coeff medium uses o =
1.3,6=0.8,7v=1.2,§ =0.Tand hardusesa«a = 1.5, = 0.6,y =1.4,6 = 0.6

Algorithm 1 Training VP-HIJF (Velocity-Prior Hamiltonian—Jacobi Flow)

Require: per time-interval #; snapshots {z, g, v "*" }I . network sg(t,x), coefficients

a, 67 )\SW7 )\mass,
1: while not converged do
2: Sample interval index k € {0, ..., K — 1},
3 Sample adjacent pairs (", v”, ") | 0l VB~ (@, Vprior g
4: Sample normalized ¢ ~ (0, 1)
5: HJB residual loss:
6: Compute sy, <+ sg(tg, k), So < So(to, Tk), $1 < So(t1, Tht1);
7 Compute importance weights wy o< r,:g
8

T < Ogsp + %HVTSkHQ + Vasg - Uprior(tka 'Tk) + %5%

B
9: Lugp < ]Epto [50] - Eptl [31] + % Zb:l Wh ri,b
10: Reconstruction loss:
11:  Initialize particles 2(*) < 2" and logw® < 0 forb = 1..B
12: ode rhs = [;v = Vyus9(t, ) + Uprior (£, ), logw = s(t, x)]
13: (ngff, logwyy1) odeint(ode ths, (zx, 0), t € [tk,tk“])
L
1 .
14: Sliced Wasserstein loss: Lgw < 7 Z Wf(xg’f?, Tht1)
=1

15:  Mass loss: Lo + (logw(1) —logw(1))?
16: £recon — )\SW ESW + )\mass Emass

17: Total loss: L(0) < o Lujs + B Lrecon

18: Update 0 < 6 —nVoL(0)

19: end while

where « is the prey’s intrinsic growth rate, (3 is the predation rate, «y is the predator’s mortality rate,
and ¢ is the predator’s growth rate from consuming prey. To model the population expansion and
decay dynamics, we use a simple scalar growth field and evolve local mass via the weight dynamics

9(2(t)) = & (01(0) —22(1)), 5 Togw(t) = g(x(1)

The total mass M (t) = E[w(t)] and the ground-truth mass ratio is calculated as ry,. = M (t)/M(0).

Table [2] (bottom) shows that adding the explicit mass term L, enables our method to closely
match 7y with 4% of relative error while both unbalanced AM and our method without the £,,,455
term suffer from a much higher relative error of over 30%. Although AM aligns transport but

leaves the scale of the scalar potential sy unconstrained, so the integrated growth fot g(z(t)) dt is
miscalibrated. By contrast, L, provides endpoint constraint on the mass — yielding better mass
dynamics and more aligned with the ground truth mass ratio.

Ablations on prior robustness In this section, we conduct various ablation studies to test the ro-
bustness of our model. In particular, we modify the quality of vprior by misspecifying it to different
scaling vprior = cv, adding Gaussian noises vprior = v + 7 and using the wrong coefficients with
various level of difficulties in the LV equation. We compare it with the prior-only approach which
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Table 2: Comparison on the EB dataset using SWD at the held-out marginals (1, t3) and the mean
over the remaining snapshots. Baseline results are taken from (Theodoropoulos et al., 2025))

Method SWD ¢, SWD t3 Rest SWD

SBIRR 0.80 + 0.06 0.91 £0.05 0.66 + 0.07
MMFM 0.59 £0.04 0.76 £+ 0.04 0.52 +£0.07
DMSB 0.58 £ 0.06 0.54 +0.06 0.45 1+ 0.04
3MSBM 0.48+0.04 0.384+0.03 0.36 £ 0.05

VP-HJF (ours) 0.37 +0.01 0.46 £0.01 0.50 £ 0.08

essentially corresponds to the ground-truth mass ratio 7, as mass is conserved in this case. Table
shows that under global scaling our approach is particularly stable — indicating that the learned
corrective field v.o;, and growth term calibrate mass well when the prior’s direction is correct up
to scale. With additive Gaussian perturbations, errors remain modest showing tolerance to stochas-
tic mis-specification. The primary failure is the wrong coefficient (hard)case, which reflects the
sensitivity to severe directional mismatch that cannot be fully compensated without incurring large
kinetic corrections.

5.2 REAL-WORLD DATASET

In this section, we evaluate our method on two single-cell RNA-seq datasets. Both provide RNA ve-
locity, which we use as the velocity prior vprior. Such priors are common in biological and scientific
applications beyond single-cell data. Incorporating them introduces an inductive bias that reduces
learning complexity — our model needs only to learn a corrective flow and growth rather than the
full dynamics from scratch.

EB scRNA-Seq data We evaluate cell-trajectory inference on the Embryoid Body (EB) dataset
of [Moon et al.|(2019), using the preprocessed release from |[Koshizuka and Sato| (2022)); Tong et al.
(2020). The dataset comprises five snapshots over 27 days, grouped as ¢ty € [0,3], t; € [6,9],
to €[12,15], t3 € [18, 21], t4 € [24, 27]. Leveraging RNA velocity as a prior vpor at each snapshot,
we train a local and shorter trajectory by adopting the local per-interval training: at each step we
sample an adjacent pair (t,tx41) and learn only the transport and growth to move py, — py,, ;-
This yields more stable gradients and low target variance than enforcing all time points jointly;. For
details of the training algorithm, see Algorithm ]

We test on 100-dim PCA components feature space and compare with recent works using the multi-
marginal approach from 3MSBM(Theodoropoulos et al.|[2025), SBIRR (Shen et al.,[2024), MMFM
(Rohbeck et al.,2025) and DMSB (Chen et al.,[2023)). We follow the experiment setup from 3MSBM
by having ¢ = 1, 3 as the held out sets. Table[2shows that our method outperforms others at t = 1
and remains competitive at other time snapshots in sliced Wasserstein distance. Notably, our method
outperforms SBIRR and MMFM which solve a piecewise Schrodinger Bridges and OT coupling
instead of a single global optimization with a joint coupling like 3MSBM and DMSB, indicating the
benefits of using RNA velocity as a local prior with per-interval supervision.

Bone marrow scRNA-Seq data We evaluate our approach on a real scRNA-seq bone-marrow
atlas with multiple hematopoietic fates from scVelo (Bergen et all, 2020). Figure [3] (left) shows
trajectories that emanates from early progenitor regions at t=0 (dark blue) and spread out to other
branches by closely following the UMAP reference (gray). Figure[3|(right) shows the learned growth
field go(t,x2) = s¢(t,x) that governs local mass dynamics. This maps shows that our model suc-
cessfully captured low growth rate in early progenitors and increases as cells enter the active cycling
and amplification stage. However, we also observe that the high growth rate near some terminal
regions. While this indicates the model can assign higher growth to specific cell types, a strong
terminal-phase growth is biologically implausible. For the bone marrow case, mature or exiting cells
should have near-zero or negative growth. This likely reflect the objective imbalance where trans-
port terms dominating mass calibration, suggesting mild regularization such as time-smoothness on
sp or branch-wise boundary constraints to better align growth with biology.
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Trajectory (Ours)

Growth rate (Ours)

1.0

Normalized time ¢
Normalized growth s (scaled)

0.0

Figure 3: Left:Bone marrow trajectories. Colored points (ours) show inferred cell trajectories over-
laid on the reference manifold (gray)) Right: Learned growth field — orange means high growth,
purple means low growth.

6 DISCUSSION AND LIMITATIONS

On the velocity prior quality and assumptions The velocity prior vp,ior indeed plays a construc-
tive—but double-edged role in our method. A good prior captures coarse dynamics - reducing the
learning complexity and improving on sample efficiency. A misspecified prior can bias the learned
corrective field sy (¢, x) and slow or destabilize training. Hence, the qualiry of Uprior Strongly in-
fluences both optimization and generalization. In practice, mild perturbation of the prior through
noise, scale or misspecification are corrected by sy, whereas severe misspecification such as overly
large or structurally wrong drifts can bias the learned corrective flow as tested in our ablation studies
Tablem Moreover, vpior does not require divergence-free assumption. Our dual objective explicitly
includes the cross term V ;5¢-Uprior in the HIB residual avoiding hidden orthogonality requirements.

Limitations In Fig.[3] (right) we observe high growth near terminal regions, which is biologically
implausible for mature or cell-cycle—exiting states. Without additional biological constraints such as
cell-cycle markers,branch—terminal boundary conditions or proliferation markers, growth—transport
disentanglement may remain underdetermined in some regions. A promising direction is to add
weak supervision on the learned growth model to improve identifiability.

For single—cell datasets we currently use local supervision—training on adjacent pairs with a
time—continuous shared network. This choice is simple and scalable and induces a globally smooth
field, but it does not jointly enforce all marginals as in recent multi-marginal methods, which may
limit long-range trajectory coherence. In future works, extending VP-HJF with global consistency
could improve on long-range trajectory inference.

7 CONCLUSION

Our method decomposes the velocity field to embed domain knowledge for better energy efficiency
and uses a single network to capture both unbalanced growth and transport.
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A PRIOR-GUIDED HJB INEQUALITY DERIVATION

To derive the velocity-prior guided HIJB residual inequality in Eq[8]
A(pm,g) 2 ]EINPO 80 )] EINM [81( )]

//pt 8ts + LIVs|® + Vs vprior + %sz) dzx dt.

(16)

We want to start by minimizing Deﬁnition@ Since vpyior 1s constant and known, we only need to

minimize the ’learned” action portion v¢e,;, then the problem becomes the following:

Consider the velocity—prior guided WFR action:

P> Vot g
S.t. at,Dt + V- (pt(vprior + Ucorr)) = Gt Pt, p\t:O = pPo, p\t:l = pP1-

Step 1: Lagrangian formulation
First, we introduce a scalar multiplier s(¢, ), the Lagrangian becomes:

c= / / (llvcone|* + 32 p i it
+ / / s(Owp + V- (p(Vprior + Veorr)) — gp) dx dt.
0Ja

Step 2: Integration by parts
Integration by parts in time on f SOp

1 =1 1
//satpdxdt: [/spdx} —//patsdxdt
0Ja Q =0 Jo

=Ezpy[50(z)] — Egnp, [s1(2 //p&'fsdxdt

Integration by parts in space on [ sV - (pw) with w := Vprior + Vot

/sV~(pw)dx:/ spw~nda—/Vs-(pw)dx.
Q o0 Q

Assuming zero boundary flux or fast decay, the boundary term vanishes:

1 1
//sV-(pw)dxdt:—//pw'Vsdxdt.
0Ja 0Ja

Then, the Lagrangian becomes
L= Ea:Npo SO( )] - Ea?“’ﬂl [81(1')]

/ / ||UcorrH2 — Ucorr* Vs + %92 —S8g— 8ts — Vs- vprior:| dx dt.

Step 3: Fenchel-Young inequality
The Fenchel-Young inequality states that for any vectors a and p, we have:
sllal®* = p-a—3lpl?
We set a = vcorr and p = Vs, then we have:
%”UcorrH2 — Ucorr* VS Z _%”VS”2

Similarly, we set a = g and p = s, then we have:

1,2 1.2

39" —s59=2—355,
with equality iff v,y = Vs and g = s. Thus, putting pieces together, we have:

A(p,veorr, 9) > Eznpo [so(z)] — Eyrp,y [s1(z)]

1
- //pt(x) (&5 + 3VslI® + Vs vprior + %52> dz dt.
0
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min - A 9) = [ [ (Hean(t )P + dot.2?) pr(e) do i
0

a7)

(18)

19)

(20)

2L

(22)

(23)

(24)

(25)

(26)
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B ADDITIONAL EXPERIMENTS

Unbalanced case - Gaussian Translation We create a synthetic gaussian dataset to mimic the
cell-fate setting by creating two uneven mass densities with a RNA velocity prior. We set Uno =
b+ n(z — uo), b = p1 — po which shift the means with a mild linear drift. By prop the
learned sy models the growth term g(x) = sp(x) to correct the mass imbalance, while Vse
adjusts the geometric shape deformation. Fig[2] (right) displays mass-aware hexbins together w1th
95% covariance ellipses. Our VP-HIJF closely aligns its ellipse with the target,indicating the mean
and covariance agreement. The light color intensity of the bins indicate the local mass allocation
match between the predicted bin masses (blue) and target (orange).

Moreover, we also examined the predicted terminal total mass ), w;(1) and the ground truth in
probability. Ours matches the target unbalanced data mass ratio, whereas AM struggled and failed
to adjust mass change. This highlights the need for an explicit mass constraint loss such as L.
In principle, the unbalanced AM objective in Eq. 4] does allow for mass change, since the growth
term g; = s; governs _; 4 Jog w, while transport is driven by Vs,. In practice, however, the model
often collapses to the trivial solution s; ~ 0, which preserves the fotal mass, or becomes unstable
with exponentially exploding weights. For the trivial case, suppose >, w;(0) = 1, and define

= [pi(e)de. Then nM(1) —nM(0) = [ E,[s:(x)] dt. If s, — 0, this implies
M (1) ~ 1, con51stent with our empirical observations. While such behavior can suffice for local
reweighting with zero net growth (as inNeklyudov et al.|(2023al), Fig. 7), it fails when the total mass
must change.

C LLM USAGE

We used LLM for improve on writing, mainly for checking grammar. We also used LLM for finding
relevent and related works.
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